martes, 26 de agosto de 2014

LIMITES MATEMATICOS


DEFINICIÓN DE LIMITES MATEMÁTICOS








El concepto de límite es una noción topológica que formaliza la noción intuitiva de aproximación hacia un punto concreto de una sucesión o una función, a medida que los parámetros de esa sucesión o función se acercan a determinado valor. En cálculo infinitesimal (especialmente en análisis real y matemático) este concepto se utiliza para definir los conceptos fundamentales de convergencia, continuidad, derivación, integración, entre otros. Si bien, el concepto de límite parece intuitivamente relacionado con el concepto de distancia, en un espacio euclídeo, es la clase de conjuntos abiertos inducidos por dicha métrica, lo que permite definir rigurosamente la noción de límite.

El concepto se puede generalizar a otros espacios topológicos, como pueden ser las redes topológicas; de la misma manera, es definido y utilizado en otras ramas de la matemática, como puede ser la teoría de categorías.

Para fórmulas, el límite se utiliza usualmente de forma abreviada mediante lim como en lim(an) = a o se representa mediante la flecha (→) como en an → a.

Karl Theodor Wilhelm Weierstrass.





Nació el 31 de octubre de 1815 en Ostenfelde, Westfalia (ahora Alemania) y murió el 19 de febrero 1897 en Berlín, Alemania.
                                                           
Weierstrass estaba interesado en la solidez de cálculo. En ese momento, no había definiciones un tanto ambiguas respecto a las bases de cálculo, teoremas y por lo tanto, importantes no pudieron ser probados con suficiente rigor. Mientras Bolzano había elaborado una definición razonablemente riguroso de un límite ya en 1817 su obra permaneció desconocida para la mayor parte de la comunidad matemática hasta años más tarde, y muchos tenían sólo definiciones vagas de límites y continuidad de funciones.

Cauchy dio una forma de la definición de límite, en el contexto de la definición formal del derivado, en la década de 1820, pero no distingue correctamente entre la continuidad en un punto frente a la continuidad uniforme sobre un intervalo, debido a la insuficiente rigor. Cabe destacar que en el 1821 Cours d'analyse, Cauchy dio una prueba famosa incorrecta de que el límite de funciones continuas es continua en sí. Lo correcto es más bien que el límite uniforme de funciones uniformemente  continua es uniformemente continua. Esto requiere que el concepto de convergencia uniforme, que se observó por primera vez por el consejero de Weierstrass, Christoph Gudermann, en un documento de 1838, donde Gudermann señalar el fenómeno, pero no se definen ni desarrolla en él. Weierstrass vio la importancia del concepto, y ambos se formalizaron y se aplica ampliamente a través de las bases de cálculo.

La definición formal de continuidad de una función, tal como se formula por Weierstrass, es como sigue: Usando esta definición y el concepto de convergencia uniforme, Weierstrass fue capaz de escribir las pruebas de varios teoremas entonces no probados, como el teorema de valor intermedio, el teorema de Bolzano-Weierstrass, y Heine-Borel teorema.

Weierstrass también hizo avances significativos en el campo de la cálculo de variaciones. Utilizando el aparato de análisis que él ayudó a desarrollar, Weierstrass fue capaz de dar una completa reformulación de la teoría que allanó el camino para el estudio moderno del cálculo de variaciones. Entre los varios axiomas importantes, Weierstrass estableció una condición necesaria para la existencia de una fuerte extrema de los problemas variacionales. También ayudó a diseñar la condición de Weierstrass-Erdmann que dan condiciones suficientes para un extremal tener un rincón junto a extrema dado, y le permite a uno encontrar una curva de minimización de una integral dada.

Otros teoremas de análisis

·         Teorema de Stone Weierstrass
·         Weierstrass-Casorati teorema
·         Las funciones elípticas de Weierstrass
·         Función de Weierstrass
·         Weierstrass M-test
·         Teorema de Weierstrass preparación
·         Lindemann-Weierstrass Teorema
·         Teorema de factorización de Weierstrass
·         Parametrización Enneper-Weierstrass

·         Sokhatsky-Weierstrass Teorema

Augustin Cauchy







Nació en París, Francia, en el año de 1789. Su padre lo inició en el estudio de la literatura, y después de una brillante carrera académica, en 1813, Lagrange y Laplace lograron convencer a su padre de que Cauchy dejase sus estudios de ingeniero para dedicarse sólo a las matemáticas. Su única, ingeniosa y original forma de resolver complicadísimos problemas le valieron la celebridad en toda Europa con la que contaba ya a los veinticuatro años. Su muy acentuada religiosidad le impedía jurar a todos los gobiernos que durante su vida hubo, haciéndole esto ganar enemigos y poner en peligro su posición como catedrático, incluso llegó a exiliarse a Italia en 1830. La pérdida de su padre y hermano, el exceso de trabajo y la edad lo acercaron a la muerte, que le llegó en su casa de campo de Sceaux en 1857.


En 1811, Cauchy resolvió el problema de Poinsot, generalización del teorema de Euler sobre los poliedros. Un año más tarde, publicaría una memoria sobre el cálculo de las funciones simétricas y el número de valores que una función puede adquirir cuando se permutan de todas las maneras posibles las cantidades que encierra. En 1814, apareció su memoria fundamental sobre las integrales definidas y luego abordando el teorema de Fermat sobre los números poligonales, llegó a demostrarlo, cosa que no pudieron Euler, Legendre, Lagrange, ni Gauss. Uno de los mayores triunfos lo obtuvo dando vigor a las demostraciones de Lagrange, ateniéndose al cálculo de ceros e infinitos y fijando las convergencias de las series del análisis. 

Algunas de sus obras relacionadas con el cálculo son el Traité de calcul diferentiel et integral (Tratado del cálculo diferencial e integral), Leçons sur la aplication du calcul infinitesimal á la géometrie (Lecciones sobre la aplicación del cálculo infinitesimal a la geometría), Sur les integrales definies prises entre des limites imaginaires (Sobre las integrales definidas tomadas entre límites imaginarios), Sur la aplication du calcul des residus á la solution des problèmes des Physique matématique (Sobre la aplicación del cálculo a la resolución de problemas físico-matemáticos), y Sur un nouveau calcul des limites (Sobre un nuevo cálculo de límites).

 No dejó de ser productivo intelectualmente ni al final de su vida, pues días antes de su muerte leyó en el Instituto una memoria sobre el empleo de un artificio de cálculo llamado coeficiente regulador

Joseph Louis Lagrange





Nacido el 25 de enero de 1736 en Turín, la capital del Piamonte Lagrange fue uno de los científicos matemáticos y físicos más importantes de finales del siglo XVIII. Inventó y maduró el cálculo de variaciones y más tarde lo aplicó a una nueva disciplina la Mecánica Celestial, sobre todo al hallazgo de mejores soluciones al Problema de tres cuerpos. También contribuyó significativamente con la solución numérica y algebraica de ecuaciones y con la teoría numérica. En su clásica Mecanique analytique (mecánicas Analíticas, 1788), transformó la mecánicas en una rama del análisis matemático. Una de las preocupaciones centrales de Lagrange fueron los fundamentos de cálculo.

Obtuvo, entre otros resultados, una ecuación diferencial general del movimiento y su adaptación para el caso particular del movimiento rectilíneo y la solución a muchos problemas de dinámica mediante el cálculo de variantes. Escribió así mismo numerosos artículos sobre cálculo integral y las ecuaciones diferenciales generales del movimiento de tres cuerpos sometidos a fuerzas de atracción mutuas.

Principales aportes a la matemática


·         Teorema del valor medio de Lagrange.
·         Fue el padre y creador del cálculo de variaciones.
·         Multiplicadores de Lagrange.
·         Polinomio de Lagrange.
·         Encontró la solución completa del problema de una cuerda que vibra transversalmente.
·         Creó la idea de ecuaciones generalizadas de movimiento, ecuaciones que demostró formalmente.
·         Descubrió los llamados puntos de Lagrange (astronomía).
·         Teoría del movimiento planetario.
·         Teoría de eliminación de parámetros.
·         Solución completa de una ecuación binomial de cualquier grado.
·         Contribuyó al cálculo de diferencias finitas con la fórmula de interpolación de Lagrange.

·         Aportes a la Teoría de Números y la resolución de ecuaciones algebraicas, que sentaron las bases para la teoría de grupos.

Jean Le Rond d’Alembert





París; 16 de noviembre de 1717 - Íbidem; 29 de octubre de 178. 


Fue uno de los primeros en comprender la importancia de las funciones y en este artículo definió la derivada de una función como el límite de los cuocientes de los incrementos.

D’Alembert fue el que más se acercó a una definición precisa de límite y de derivada. Más en realidad toda duda se desvanecía ante el éxito de sus aplicaciones, de manera que el cálculo infinitesimal, más que una rama de la matemática, se convertía en una especie de doncella de la ciencia natural, en un auxiliar muy valioso, pero auxiliar al fin de las varias ramas de la física.

Su obra maestra fue el tratado de dinámica, donde enunció el teorema que lleva su nombre (principio de d'Alembert). El Teorem Fundamental del Álgebra recibe en algunos países de Europa el nombre de teorema de d'Alembert - Gauss dado que d'Alembert fue el primero en dar una prueba casi completa sobre dicho teorema